metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rui-Feng Song* and Yu-Hong Wang

Department of Chemistry and Chemical Engineering, University of Science and Technology of Suzhou, Suzhou 215009, People's Republic of China

Correspondence e-mail: songrf@mail.usts.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å Disorder in solvent or counterion R factor = 0.048 wR factor = 0.100 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[8-(4-pyridylsulfanylmethyl- κN)quinoline]silver(I) trifluoromethanesulfonate

The title mononuclear complex, $[Ag(C_{15}H_{12}N_2S)_2]CF_3SO_3$, reveals the molecular symmetry C_2 with the Ag atom located on a crystallographic twofold axis. The Ag^I centre is coordinated by two pyridine *N*-donors of two 8-(4pyridylsulfanylmethyl)quinoline ligands in an almost linear geometry. The N-Ag-N angle is 173.06 (18)° and the Ag-N distance is 2.129 (3) Å.

Comment

Heterocyclic flexible thioether ligands containing nitrogen donors are well known ligands in transition metal coordination compounds (Hong *et al.*, 2000*b*; Suenaga *et al.*, 1999; Zou *et al.*, 2004). An increasing number of Ag^I complexes with such ligands are being investigated because of their intriguing structural diversity and potential applications as functional materials (Hartshorn & Steel, 1998; Hong *et al.*, 2000*a*; Su *et al.*, 2000; Zheng *et al.*, 2003). Therefore, we prepared the 8-(4pyridylsulfanylmethyl)quinoline ligand and its title silver complex, (I).

Complex (I) consists of a discrete mononuclear $[Ag(L)_2]^+$ cation and an uncoordinated trifluoromethanesulfonate anion. The $[Ag(L)_2]^+$ ion comprises two *L* ligands and one Ag^I ion, and possesses twofold rotation symmetry (Fig. 1). Each Agatom, located on the twofold axis [special position 4(e) of the space group C2/c], has a slightly distorted linear geometry, coordinated by two pyridine N atoms of 8-(4pyridylsulfanylmethyl)quinoline (Table 1, Fig. 1). A weak $Ag \cdots O$ interaction with a distance of 3.309 (3) Å is observed (Fig. 1). The planes of the pyridine and quinoline rings of each *L* ligand form a dihedral angle of 80.8 (1)°, and the dihedral angle between the two pyridine rings is 65.1 (1)°.

The molecular packing of (I) is influenced by intermolecular π - π interactions; the pyridine rings are separated by 3.779 (4) and 3.779 (4) Å (Fig. 2).

Experimental

The ligand 8-(4-pyridylsulfanylmethyl)quinoline was prepared by the reported procedure (Song *et al.*, 2003). The title complex was prepared by adding slowly a solution of AgCF₃SO₃ (26 mg, 0.1 mmol)

Received 9 November 2006 Accepted 20 November 2006

m3546 Song and Wang • [Ag(C₁₅H₁₂N₂S)₂]CF₃SO₃ doi:10.1107/S1600536806049786 Acta Cryst. (2006). E62, m3546–m3547

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids. The dashed line indicates the weak Ag...O interaction. [Symmetry codes: (i) -x + 1, y, $-z - \frac{1}{2}$; (ii) x, y, z - 1; (iii) 1 - x, y, $\frac{1}{2} - z$.]

Figure 2

A view of intermolecular π - π interactions between the parallel pyridine rings of neighbouring complex cations [symmetry codes: (i) -x + 1, y, $-z - \frac{1}{2}$; (iv) 1 - x, -y, -z; (v) 1 - x, -y, -z - 1; (vi) $x, -y, -\frac{1}{2} + z$].

in CH₃CN (3 ml) to a solution of L (25 mg, 0.1 mmol) in CHCl₃ (3 ml). Slow diffusion of acetone into the resulting solution yielded colourless single crystals of (I) suitable for X-ray analysis in 28% yield. Analysis found: C 48.23, H 3.11, N 7.37; calculated for C₃₁H₂₄AgF₃N₄O₃S₃: C 48.89, H 3.18, N 7.36%.

Crystal data

$[Ag(C_{15}H_{12}N_{2}S)_{2}]CF_{3}SO_{3}$	
$M_r = 761.59$	
Monoclinic, C2/c	
a = 24.851 (8) Å	
b = 9.276 (3) Å	
c = 14.091 (4) Å	
$\beta = 107.991 \ (6)^{\circ}$	
$V = 3089.4 (17) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and φ scans Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{\min} = 0.891, T_{\max} = 1.000$ (expected range = 0.742 - 0.833)

Z = 4 $D_x = 1.637 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.91 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.30 \times 0.22 \times 0.20 \text{ mm}$

8559 measured reflections 3182 independent reflections 1786 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.048$ $\theta_{\rm max} = 26.5^\circ$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.035P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.048$	+ 2.1514P]
$vR(F^2) = 0.100$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
5182 reflections	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm A}^{-3}$
222 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

2.129 (3)	N1-C5	1.338 (5)
1.336 (5)		
173.06 (18)	C1-N1-Ag1	120.2 (3)
116.7 (3)	C5-N1-Ag1	123.1 (3)
	2.129 (3) 1.336 (5) 173.06 (18) 116.7 (3)	2.129 (3) N1-C5 1.336 (5) 173.06 (18) C1-N1-Ag1 116.7 (3) C5-N1-Ag1

Symmetry code: (i) $-x + 1, y, -z - \frac{1}{2}$.

H atoms were included in calculated positions and refined in a riding model with C-H distances of 0.93 (aromatic H) and 0.97 Å (methylene H), and with $U_{iso}(H) = 1.2U_{eq}(C)$. The CF₃SO₃ anion is disordered: S2, O2 and F2 are disordered between two positions, each with occupancy 50%.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

The authors thank Dr Jianrong Li of Nankai University for discussions and the University of Science and Technology of Suzhou for financial support.

References

- Bruker (1998). SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hartshorn, C. M. & Steel, P. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3935-3940
- Hong, M. C., Zhao, Y. J., Su, W. P., Cao, R., Fujita, M., Zhou, Z. Y. & Chan, A. S. C. (2000a). Angew. Chem. Int. Ed. 39, 2468-2470.

Hong, M. C., Zhao, Y. J., Su, W. P., Cao, R., Fujita, M., Zhou, Z. Y. & Chan, A. S. C. (2000b). J. Am. Chem. Soc. 122, 4819-4820.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,
- Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.
- Song, R.-F., Xie, Y.-B., Li, J.-R. & Bu, X.-H. (2003). Dalton Trans. pp. 4742-4748

Su, C. Y., Liao, S., Zhu, H. L., Kang, B. S., Chen, X. M. & Liu, H. Q. (2000). J. Chem. Soc. Dalton Trans. pp. 1985-1993.

- Suenaga, Y., Kuroda-Sowa, T., Maekewa, M. & Munakata, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2737-2741.
- Zheng, Y., Du, M., Li, J.-R., Zhang, R. H. & Bu, X.-H. (2003). Dalton Trans. pp. 1509-1514.
- Zou, R.-Q., Li, J.-R., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2004). Cryst. Growth Des. 4, 79-84.